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Abstract
The discrete coagulation–fragmentation equations with a bilinear coagulation
kernel, describing the evolution of clusters of particles undergoing binary
reactions, are studied. We compute the gelation time and post-gelation mass for
the pure coagulation equation. A method of characteristics is developed to solve
numerically the partial differential equation satisfied by a moment generating
function for a product coagulation kernel and a constant fragmentation rate. The
accuracy of the numerical method is verified by comparison of the numerical
results with an exact solution for the number density of monomers. For a given
coagulation rate, a critical value of the fragmentation rate, values greater than
which lead to mass conservation, is identified.

PACS numbers: 02.60.cb, 87.18.Ed

1. Introduction

The evolution in time of a system of particle clusters, under the assumption of only binary
interactions, may be modelled by the discrete coagulation–fragmentation equations

dNk

dt
= 1

2

k−1∑
i=1

Ki,k−iNiNk−i +
∞∑

j=1

Fk,jNk+j − 1

2

k−1∑
i=1

Fi,k−iNk −
∞∑

j=1

Kk,jNkNj , (1)

where Nk denotes the number density of clusters of k particles (so-called k-mers), Kk,j is the
coagulation rate of a k-mer with a j -mer (to form a (k + j)-mer) and Fk,j denotes the rate at
which a (k + j)-mer fragments into a k-mer and a j -mer. Useful reviews of the numerous
application areas of (1) may be found, for example, in chapters by Drake [8] and Ernst [11].
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There exists a large and growing literature discussing the existence and uniqueness of solutions
of (1) and its continuous analogue, in the special case of pure coagulation (Fk,j = 0,∀ k, j)

and for various choices of coagulation coefficient Kk,j . A summary of some of the more
important papers for the coagulation equation may be found in the new review by Wattis [24],
for example.

Existence and uniqueness results for the full discrete coagulation–fragmentation equations
are rather less numerous. In 1984, Spouge [22] proved the existence of solutions over
some non-zero time interval to (1) in the case 0 � Ki,j � cicj , where cn = o(n) as
n → ∞,

∑k−1
i=1 iFi,k−i � Ck for some constant C and 0 � Fk,i � dk,i = o(k) for fixed i

as k → ∞. Existence was proved by Spouge by taking the limit of the finite-dimensional
system, obtained by replacing ∞ in the upper limits of sums in (1) by N − k for some
finite N. A solution of (1) obtained in this way is called an admissible solution. A similar
approach was adopted by Ball and Carr [1] in their extension to the fragmentation–coagulation
equations of earlier analysis of uniqueness and existence of solutions of the Becker–Döring
equations [2]. Amongst other results, the authors showed that a unique solution to (1) existed
provided Kj,k � C(jk)α ∀ j, k where C is a positive constant and 0 � α � 1

2 , and a suitably
restrictive growth condition was imposed on the fragmentation rate. Questions of the existence
and uniqueness of solutions to (1) are closely related to (and therefore often considered in
the same papers as) the issue of mass conservation, that is, whether or not the total particle
number density

∑∞
k=0 kNk remains constant for all time. Certain choices of the coagulation

and fragmentation rate functions or of the initial conditions may be shown to lead to gelation.
That is mass conservation breaks down in finite time and is physically interpreted as being
caused by the appearance of a ‘superparticle’ (a cluster of infinite size) that takes mass out
of the system (see Ernst et al [12]). Ball and Carr [2] were able to show that solutions
to (1) having Kj,k � rj + rk + αj,k where {rj } is a non-negative sequence, αj,k � 0 ∀ j, k and
αj,k � C(j + k) for C a constant and j, k sufficiently large, were mass conserving, provided
there exists a constant κ such that

[(r+1)/2]∑
j=1

jFr−j,j � κr, ∀ r � 2,

where [·] denotes the integer part of a real number. A couple of years later, Carr [4] considered
the case Kj,k � C(j + k) and strong fragmentation: there exists γ > 0 such that for any
m � 0 ∃κ(m) > 0 such that

[(r−1)/2]∑
j=1

jmFr−j,j � κ(m)rγ +m, ∀ r � 3. (2)

It was shown in [4] that under the above conditions admissible solutions Nk had finite moments

Mn =
∞∑

k=1

knNk(t), (3)

for any n > 1. Carr also showed convergence from arbitrary initial data with finite density
to the equilibrium solution. The existence and uniqueness of (mass conserving) admissible
solutions for coagulation coefficients satisfying

Kk,j � C(jk)α,
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for some constant C, α ∈ (
1
2 , 1

)
and strong fragmentation in the sense of (2) was proved

by Da Costa [7] in 1995. More recently, Fournier and Mischler [15] considered the discrete
coagulation–fragmentation system (1) with

Ki,j � K0(ij)α, F1(i + j)s � Fi,j � F0(i + j)γ ,

α ∈ [0, 1], γ ∈ (−1,∞), s ∈ (−1,∞).
(4)

With fragmentation sufficiently strong relative to the coagulation rate in the sense that
2 + γ > 2α, and for sufficiently small initial data, the authors were able to prove the
exponential convergence of M2 to a unique equilibrium value.

A number of results are available for the continuous coagulation–fragmentation equations.
In this case the coagulation and fragmentation coefficients are continuous functions of variables
(x, y) ∈ [0,∞)2. Dubovskiı̌ and Stewart [9] proved the existence, uniqueness and mass
conservation theorems for the continuous analogue to (1) in the case K(x, y) � C(1 + x + y)

and a large class of fragmentation kernels F. Escobedo et al [13] proved that if

K(x, y) = xαyβ + xβyα, F (x, y) = (1 + x + y)γ ,

with 0 � α � β � 1 and γ ∈ R, gelation occurred if λ := α + β > 1 and γ < (λ − 3)/2.
Shortly afterwards, Escobedo et al [14] showed that for λ > 1 mass was conserved when
γ > λ − 2 (that is, for sufficiently strong fragmentation) but that for sufficiently large initial
data gelation occurred when λ > 1 and γ ∈ [(λ − 3)/2, λ − 2).

A common theme running through many of the papers cited above, and others like them,
is the identification, for a given coagulation rate, of what constitutes a sufficiently strong
fragmentation rate in order that mass conserving solutions should exist. In the present paper,
we wish to study the behaviour of solutions to (1) when the coagulation kernel has the bilinear
form

Kk,j = (α + βk)(α + βj) = α2 + αβ(k + j) + β2kj,

for real constants α and β and the fragmentation kernel assumes its simplest possible form
Fk,j = b, where b is a constant. It is known that for the pure coagulation equation (b = 0),
in either its discrete or continuous form, gelation occurs for any β > 0 [17–21]. By choosing
b > 0 it is to be expected that the gelation time will increase. In this paper, we wish to
investigate whether by choosing b sufficiently large we are able to not just delay the onset of
gelation but suppress gelation altogether. If so, how large should b be relative to β in order
that the solution be mass conserving and what is the relationship between the gelation time
and b?

In section 2 we derive the partial differential equation satisfied by a moment generating
function ϕ and discuss the macroscopic rate equations. We begin section 3 by solving the
characteristic equations for the ϕ equation and deriving expressions for the gelation time and
post-gelation mass in the case of the pure coagulation equation. The remainder of the paper
is concerned, when α = 0, with determining how large b should be relative to β in order
that the mass should be conserved. We begin in section 3.2.1 by showing, using elementary
arguments, that a critical value of ε := b/(β2M1) ∈ [1, 6] must exist, values greater than
or equal to which ensure that the solution to (1) is mass conserving. The theory for regular
perturbation solutions for small values of ε is derived in section 3.2.2. In section 3.2.3, we
present a numerical method for the integration of the characteristic equations referred to above
and use our method to determine numerically the gelation time as a function of ε.



11752 É Brunelle et al

2. Basic equations

2.1. Moment generating function

Let us introduce a moment generating function

ϕ(x, t) =
∞∑

k=1

xkNk(t), |x| � 1, (5)

and suppose that the first moment (total number of particles) is finite, i.e.

M1 =
∞∑

k=1

kNk < ∞.

Then, multiplying (1) throughout by xk and summing over all k we get a partial differential
equation for ϕ

∂ϕ

∂t
= 1

2

∞∑
k=1

k−1∑
i=1

xkKi,k−iNiNk−i +
∞∑

k=1

∞∑
j=1

xkFk,jNk+j

− 1

2

∞∑
k=1

k−1∑
i=1

xkFi,k−iNk −
∞∑

k=1

∞∑
j=1

xkKk,jNkNj , (6)

= 1

2

∞∑
k=1

∞∑
j=1

xk+jKk,jNkNj +
∞∑

k=1

k−1∑
i=1

xiFi,k−iNk

− 1

2

∞∑
k=1

k−1∑
i=1

xkFi,k−iNk −
∞∑

k=1

∞∑
j=1

xkKk,jNkNj , (7)

= 1

2

∞∑
k=1

∞∑
j=1

xk+j (α2 + αβ(k + j) + β2kj)NkNj

+ b

∞∑
k=1

(
xk − x

x − 1

)
Nk − b

2

∞∑
k=1

xk(k − 1)Nk

−
∞∑

k=1

∞∑
j=1

xk(α2 + αβ(k + j) + β2kj)NkNj ,

⇒ ∂ϕ

∂t
= α2ϕ2

2
− α2M0ϕ + αβ

(
xϕ

∂ϕ

∂x
− M0x

∂ϕ

∂x
− M1ϕ

)
+ β2

(
1

2
x2

(
∂ϕ

∂x

)2

− M1x
∂ϕ

∂x

)
+

b

x − 1
(ϕ − xM0) +

b

2
ϕ − bx

2

∂ϕ

∂x
.

(8)

In the developments leading to (8) we have used the fact that M1 < ∞ means that the series
∞∑

k=1

∞∑
j=1

xk+jKk,jNkNj ,

∞∑
k=1

k−1∑
i=1

xiFi,k−iNk = b

∞∑
k=1

(
xk − x

x − 1

)
Nk

are both (absolutely) convergent for |x| � 1. This allows us to equate the first two terms
in (6) with the first two terms in (7), since the first (respective, second) term in (6) is just a
rearrangement of the first (respective, second) term in (7).
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2.2. Macroscopic rate equations

The evolution equation for the kth moment Mk , assuming that Mk+1 < ∞ is (see, for example,
equation (2.2) of [15] or equation (1.6) of [22])

dMk

dt
= 1

2

∞∑
i=1

∞∑
j=1

NiNj [(i + j)k − ik − jk]Kij +
1

2

∞∑
i=1

Ni

i−1∑
j=1

[jk + (i − j)k − ik]Fj,i−j .

(9)

When k = 1 and M2 is finite, we therefore see from (9) that

dM1

dt
= 0,

so that mass is conserved. To see what happens to dM1/dt in the more general case, we
differentiate (8) throughout with respect to x and after some tedious but straightforward
algebra we get

∂2ϕ

∂t∂x
=

(
α(ϕ − M0) + β

(
x

∂ϕ

∂x
− M1

)) (
(α + β)

∂ϕ

∂x
+ βx

∂2ϕ

∂x2

)
+ b

(
(x − 1)

(
∂ϕ

∂x
− M0

) − (ϕ − xM0)

(x − 1)2
− x

2

∂2ϕ

∂x2

)
. (10)

Thus,

dM1

dt
= lim

x→1−

{
b

2
(1 − x) + βx

[
α(ϕ − M0) + β

(
x

∂ϕ

∂x
− M1

)]}
∂2ϕ

∂x2
. (11)

If M2 is finite then the mass is conserved as before. If, however, ∂2ϕ/∂x2 diverges as x → 1−

then gelation occurs.
In the case k = 0, (9) becomes

dM0

dt
= −1

2
(αM0 + βM1)

2 +
1

2
b(M1 − M0). (12)

This is just a non-homogeneous Bernoulli differential equation and if we assume mass
conservation then its solution is

M0 − M0,st = (M0(0) − M0,st)

exp(γ t/2) + α2

γ
(exp(γ t/2) − 1)(M0(0) − M0,st)

, (13)

where

γ =
√

b2 + 4αbM1(α + β),

M0(0) denotes the initial value of M0 and M0,st is the steady value of M0, given by

M0,st =


γ − b

2α2
− βM1

α
, α �= 0

M1

(
1 − β2M1

b

)
, α = 0.

(14)
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2.3. Characteristic equations for (8)

Let us introduce the variables

p := ∂ϕ

∂x
, q := ∂ϕ

∂t
, z := ϕ.

Then, equation (8) for ϕ may be written as F(x, t, z, p, q) = 0 where F(x, t, z, p, q) is
defined as

F(x, t, z, p, q) := q − α2z2

2
+ α2M0z − αβ(x(z − M0)p − M1z)

−β2

(
1

2
x2p2 − xM1p

)
− b

[
1

2
(z − xp) +

z − xM0

x − 1

]
. (15)

In terms of the characteristic variables s and ξ , Charpit’s equations become

dt

ds
= ∂F

∂q
= 1, t (0) = t0(ξ), (16)

dx

ds
= ∂F

∂p
= −αβx(z − M0) − β2(x2p − xM1) +

bx

2
, x(0) = x0(ξ), (17)

dz

ds
= p

∂F

∂p
+ q

∂F

∂q
= −αβxp(z − M0) − β2(x2p2 − xpM1) +

bxp

2
+ q,

z(0) = z0(ξ),

(18)

dp

ds
= −∂F

∂x
− p

∂F

∂z
= α2p(z − M0) + αβp(z − M0 + xp − M1)

+ β2p(xp − M1) + b

[
p

x − 1
− z − M0

(x − 1)2

]
, p(0) = p0(ξ), (19)

dq

ds
= −∂F

∂t
− q

∂F

∂z
= α2(q(z − M0) − zṀ0) + αβ(q(xp − M1) − xpṀ0 − zṀ1)

−β2xpṀ1 + b

[
q

2
+

q − xṀ0

x − 1

]
, q(0) = q0(ξ). (20)

We set the initial conditions for t, x and z as

t0(ξ) = 0, x0(ξ) = ξ, and z0(ξ) = h(ξ), (21)

for some function h ∈ C∞[0, 1]. It then follows from

z′
0(ξ) = p0(ξ)x ′

0(ξ) + q0(ξ)t ′0(ξ)

and

F(x0(ξ), t0(ξ), z0(ξ), p0(ξ), q0(ξ)) = 0

that

p0(ξ) = h′(ξ) (22)

and

q0(ξ) = α2h2(ξ)

2
− α2M0(0)h(ξ) + αβ[ξ(h(ξ) − M0(0))h′(ξ) − M1(0)h(ξ)]

+ β2

[
1

2
ξ 2h′(ξ)2 − ξM1(0)h′(ξ)

]
+ b

[
1

2
(h(ξ) − ξh′(ξ)) +

h(ξ) − ξM0(0)

ξ − 1

]
.

(23)
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We observe that

M0(0) = ϕ(1, 0) = z0(1) = h(1),

and

M1(0) = p0(1) = h′(1)

so that (23) becomes

q0(ξ) = α2h2(ξ)

2
− α2h1h(ξ) + αβ[ξ(h(ξ) − h1)h

′(ξ) − h′
1h(ξ)]

+ β2

[
1

2
ξ 2h′(ξ)2 − ξh′

1h
′(ξ)

]
+ b

[
1

2
(h(ξ) − ξh′(ξ)) +

h(ξ) − ξh1

ξ − 1

]
, (24)

where, in the above, we have introduced the abbreviated notation h1 and h′
1 for h(1) and h′(1),

respectively.
Clearly, t = s and we now seek solutions to (16)–(24) in the form x = X(ξ, t), z =

Z(ξ, t), p = P(ξ, t) and q = Q(ξ, t). Provided ∂X/∂ξ �= 0 we may invert the relationship
between x and ξ to get ξ = ξ̂ (x, t) for some function ξ̂ : [0, 1] × R −→ [0, 1] and then write

ϕ(x, t) = Z(̂ξ(x, t), t),
∂ϕ

∂x
(x, t) = P (̂ξ(x, t), t).

It follows that

M0(t) = ϕ(1, t) = Z(̂ξ(1, t), t) = Z(ξ0(t), t),

M1(t) = ∂ϕ

∂x
(1, t) = P(ξ0(t), t) = ∂Z

∂ξ
(ξ0(t), t)

∂ξ̂

∂x
(1, t) =

∂Z
∂ξ

(ξ0(t), t)

∂X
∂ξ

(ξ0(t), t)
,

where ξ0(t) is defined by X(ξ0(t), t) = 1.

3. Solution of (8)

The solution to equation (8) in the case β = 0 has been known since 1945 for monodisperse
initial conditions [3] and the solution for more general initial conditions may be found in [11].
Solutions and gelation times for the pure coagulation equation (b = 0) with a general quadratic
coagulation kernel Kij = A + B(i + j) + Cij and monodisperse initial conditions have been
obtained by Spouge [21] and showed that the gelation time was finite for any C > 0. Indeed,
for A = 0 and C > 0 this gelation time was calculated as tgel = 1/C. The case A = B = 0
and C = 1 with monodisperse initial conditions had already been considered by McLeod [18]
and he showed, by explicitly calculating the solution, that a solution to this particular case of
the coagulation equations existed for 0 � t � 1.

In the present paper, we present the following results:

(1) We compute the gelation time and post-gelation mass for the coagulation equation when
α = 0 and the initial conditions are as given in (21). In doing so, we reproduce the
formula obtained by Hendriks et al [16] for the gelation time in the case of general initial
conditions and generalize the post-gelation mass results of McLeod [18], Spouge [21] and
Hendriks et al [16], obtained under the assumption of monodisperse initial conditions. A
similar analysis in the case of the continuous coagulation equations may be found in van
Roessel and Shirvani [23].

(2) A method of characteristics is developed to solve (8) numerically for general values of β

and b, in the case α = 0. A critical value of ε is identified, values smaller than which
lead to a finite gelation time.



11756 É Brunelle et al

3.1. Solution of (8) when α = 0, b = 0, β > 0. Gelation time and post-gelation mass

The characteristic equations (16)–(24) in this case become

dx

dt
= −β2x(xp − M1(t)), x(0) = ξ, (25)

dz

dt
= −β2xp(xp − M1(t)) + q, z(0) = h(ξ), (26)

dp

dt
= β2p(xp − M1(t)), p(0) = h′(ξ), (27)

dq

dt
= −β2xpṀ1(t), q(0) = β2

2
ξh′(ξ)[ξh′(ξ) − 2h′

1]. (28)

From (25) and (27) we get
dp

dx
= −p

x
⇒ px = ξh′(ξ). (29)

Then, from (28) and (29) it may be deduced that

dq

dt
= −β2ξh′(ξ)Ṁ1(t) ⇒ q = Q(ξ, t) = β2

2
ξh′(ξ)[ξh′(ξ) − 2M1(t)]. (30)

(In fact, in the present case, we could have got q directly from (15).) Equations (25) and (29)
lead to
dx

dt
= −β2x(ξh′(ξ) − M1(t)) ⇒ x = X(ξ, t) = ξ exp(−β2[tξh′(ξ) − R(t)]), (31)

where

R(t) :=
∫ t

0
M1(s) ds,

and from (29) and (31) we see that

p = P(ξ, t) = h′(ξ) exp(β2[tξh′(ξ) − R(t)]).

Finally, we use (26), (29) and (30) in order to conclude that

dz

dt
= −β2ξ 2h′(ξ)2

2
⇒ z = Z(ξ, t) = h(ξ) − β2tξ 2h′(ξ)2

2
.

Gelation will occur when there is a shock in the solution of (8) and this occurs when a derivative
of ∂ϕ/∂x becomes infinite or, equivalently, when ∂X/∂ξ = 0.

Differentiating X from (31) we get
∂X

∂ξ
(ξ, t) = exp(−β2[tξh′(ξ) − R(t)])[1 − β2tξ(ξh′′(ξ) + h′(ξ))],

so that
∂X

∂ξ
= 0 ⇒ t = 1

β2ξ(ξh′′(ξ) + h′(ξ))
=: T (ξ).

Defining T (ξ) as in the above equation, the gelation time tgel is now given by

tgel := inf
0�ξ�1

T (ξ), (32)

and since both h′ and h′′ must be monotonic increasing functions, T is a monotonic decreasing
function, so that

tgel = T (1) = 1

β2(h′′
1 + h′

1)
= 1

β2M2(0)
. (33)
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When β = 1 this is the same result as that of Hendricks et al [16] (see their equation (5.7)).
When monodisperse initial conditions are imposed (h(ξ) = M1(0)ξ) we see that the gelation
time tgel equals 1/(β2M1(0)) which is the same result (after a change of notation) obtained by
Spouge [21].

We now differentiate X(ξ0(t), t) = 1 throughout with respect to t to get
∂X

∂ξ
(ξ0(t), t)

dξ0

dt
+

∂X

∂t
(ξ0(t), t) = 0. (34)

From (25) we see that when X = 1
∂X

∂t
= dx

dt
= −β2(P (ξ0(t), t) − M1(t)) = 0.

Prior to gelation (0 � t < tgel) we have ∂X/∂ξ �= 0 so that from (34)

dξ0(t)

dt
= 0 ⇒ ξ0(t) = 1.

For t � tgel

∂X

∂ξ
(ξ0, t) = 0,

which means that ξ = ξ0(t) is the solution to the equation

1 − β2tξ0[h′(ξ0) + ξ0h
′′(ξ0)] = 0.

Once ξ0 has been determined, the post-gelation mass M1(t) is calculated using (29) as

M1(t) = P(ξ0(t), t) = ξ0(t)h
′(ξ0(t))

X(ξ0(t), t)
= ξ0(t)h

′(ξ0(t)).

This generalizes the result, obtained by previous authors (see, for example, Hendricks et al
[16] and the references therein) for monodisperse initial conditions, that, for t � tgel

M1(t) = M1(0)

β2t
.

Remark. In the case of the pure coagulation equations, a product coagulation kernel
Kij = β2ij and under monodisperse initial conditions, the exact solution to (1) is known
[8, 17, 18, 24]:

Nk(t) =


β2(k−1)t k−1 exp(−kβ2t)

kk−2

k!
t � 1

β2
,

exp(−k)
kk−2

β2tk!
t � 1

β2
,

(35)

and allows us to state for this case that all moments Mk remain finite up to tgel. All Mk for k � 2
then diverge at t = tgel. Evidence for the existence of only one singular point tgel in the case
of more general coagulation kernels has been presented in section 5.1 of [16], for example.
However, the question of whether or not higher moments (Mk, k � 3) diverge before the gel
time in the general case, including the full fragmentation–coagulation equations, still appears
to be an open one. From (9) it may be seen that the fragmentation terms have a negative net
effect on the rate of change of Mk . This is because for all k � 1 and i � 1,
i−1∑
j=1

[jk + (i − j)k − ik] = 2
i−1∑
j=1

jk − ik(i − 1) � 2
∫ i−1/2

1/2
xkdx − ik(i − 1)

= 2

k + 1

[(
i − 1

2

)k+1

− 1

2k+1

]
− ik+1 + ik � 0. (36)
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It follows that starting with the same initial conditions, the solution Mk of (9) is bounded above
by the corresponding solution to the pure coagulation equation up to the pure coagulation gel
time. Thus, (9) certainly remains valid for all k over this time interval. We assume in what
follows that all higher moments (k � 2) diverge (if at all) at the same time: the fragmentation–
coagulation gel time, which is, of course, greater than the pure coagulation gel time.

3.2. Solution of (8) when α = 0, β > 0, b > 0.

For simplicity we shall set α = 0 throughout this section, since choosing α �= 0 does not change
the qualitative gelling behaviour of the solutions (in particular, if a solution is mass conserving
with α = 0 it remains so with α > 0 [21]). We rescale each of the Nk(k = 1, 2, 3, . . .) by
dividing them by M1. We introduce a non-dimensional time t∗ = β2M1t/2 and denote the
ratio b/(β2M1) by ε.

3.2.1. Bounds on the gelation time. Dropping the asterisk on the dimensionless time, we
may deduce from (9) in the case k = 2 that (with the assumption, as noted above, that M3

remains finite as long as M2 does)

dM2

dt
= 2M2

2 − ε

3
(M3 − 1). (37)

Then, inspired by Escobedo et al [13] (see their equations (1.34) and (1.35)), we see that since,
by Hölder’s inequality, M3 � M2

2 ,

dM2

dt
�

(
2 − ε

3

)
M2

2 +
ε

3
. (38)

Therefore,

M2(t) �


M2(0) + 2t for ε = 6,

1√
1−6ε−1

[
(1+

√
1−6ε−1M2(0))−(1−√

1−6ε−1M2(0)) exp
(
− 2εt

√
1−6ε−1

3

)
(1+

√
1−6ε−1M2(0))+(1−√

1−6ε−1M2(0)) exp
(
− 2εt

√
1−6ε−1

3

) ]
for ε > 6,

(39)

so that M2 remains bounded for all finite t and the solutions to (1) are mass conserving,
whenever ε � 6, the right-hand sides of (39) being the exact solutions to (38) when equality
replaces the inequality.

When ε < 6

M2(t) � 1√
6ε−1 − 1

tan

(
εt

√
6ε−1 − 1

3
+ tan−1(

√
6ε−1 − 1M2(0))

)
. (40)

This does not mean necessarily that the system has a finite gelation time but does imply that
the gelation time must exceed

tmin
gel := 3

ε
√

6ε−1 − 1

[π

2
− tan−1(

√
6ε−1 − 1M2(0))

]
, (41)

this being the time at which the bound in (40) becomes infinite. In an attempt to find an upper
bound on the gelation time we first write the rescaled form of (12) when α = 0 as

dM0

dt
= (ε − 1) − εM0, (42)

and, under the assumption of mass conservation, solve to get

M0 = (1 − ε−1) + (M0(0) − (1 − ε−1)) exp(−εt). (43)
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On physical grounds we must have M0(0) > 0 and clearly, when ε > 1,M0 as given above
never attains zero. Still supposing that M1 is a constant, we calculate the (finite) time at which
M0 as given by (43) vanishes when ε < 1 to be tmax

gel , where this is

tmax
gel = 1

ε
log

(
ε(M0(0) − 1) + 1

1 − ε

)
.

Since, from Hölder’s inequality

M2 � 1

M0
,

we conclude that when ε < 1 the gelation time is finite and bounded above by tmax
gel .

Remark. In the continuous case, corollary 2.5 of [14], for example, shows that when the
initial mass M1(0) is big enough (thus, in our notation, when ε is sufficiently small) gelation
takes place.

3.2.2. A perturbation solution to (8). We seek a regular perturbation expansion, supposed to
be valid for sufficiently small ε for Nk:

Nk = Nk0 + εNk1 + ε2Nk2 + · · · , k = 1, 2, 3, . . . ,

which leads to expansions for the moments and moment generating function of the form

Mk = Mk0 + εMk1 + ε2Mk2 + · · · , k = 0, 1, 2, . . . ,

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · . (44)

Substituting the perturbation expansions (44) into the rescaled form of (8)

∂ϕ

∂t
= x2

(
∂ϕ

∂x

)2

− 2x
∂ϕ

∂x
+

2ε

x − 1
(ϕ − xM0) + ε

(
ϕ − x

∂ϕ

∂x

)
, (45)

leads to
∂ϕ0

∂t
+ ε

∂ϕ1

∂t
+ ε2 ∂ϕ2

∂t
+ · · ·

= x2

(
∂ϕ0

∂x
+ ε

∂ϕ1

∂x
+ ε2 ∂ϕ2

∂x
+ · · ·

)2

− 2x

(
∂ϕ0

∂x
+ ε

∂ϕ1

∂x
+ ε2 ∂ϕ2

∂x
+ · · ·

)
+

2ε

(x − 1)
(ϕ0 + εϕ1 + ε2ϕ2 + · · · − x(M00 + εM01 + ε2M02 + · · ·))

+ ε

(
ϕ0 + εϕ1 + ε2ϕ2 + · · · − x

(
∂ϕ0

∂x
+ ε

∂ϕ1

∂x
+ ε2 ∂ϕ2

∂x
+ · · ·

))
. (46)

We seek to solve (45) subject to the usual initial conditions x(0) = ξ and ϕ(x(0), 0) = h(ξ).
The O(1) solution to (45) is just that of the pure coagulation case (b = 0) and the method of
solution therefore follows directly from that used in section 3.1. From Charpit’s equations we
solve to get

x(t) = ξ exp(2t (1 − ξh′(ξ))), (47)

ϕ0(x(t), t) = h(ξ) − tξ 2h′(ξ)2. (48)

Under monodisperse initial conditions the exact solution ϕ0 for 0 � t � 1/2 is known (see
equation (35)):

ϕ0(x, t) =
∞∑

k=1

2k−1t k−1 exp(−2kt)
kk−2

k!
xk. (49)
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Solving (45) at O(εk)(k = 1, 2, 3, . . .) necessitates the solution of

∂ϕk

∂t
− 2x

∂ϕk

∂x

(
x

∂ϕ0

∂x
− 1

)
= Fk(ϕ0, ϕ1, . . . , ϕk−1), (50)

for some function Fk of the (already known) lower order terms in the perturbation expansion.
The method of characteristics for (50) would then lead to the following system of equations:

dx

dt
= −2x

(
x

∂ϕ0

∂x
− 1

)
, x(0) = ξ, (51)

dz

dt
= Fk(ϕ0(x(t), t), ϕ1(x(t), t), . . . , ϕk−1(x(t), t)), z(0) = 0. (52)

Although a numerical method could be used to solve (51) and (52) for k = 1, 2, 3, . . . it is
more efficient to solve (45) directly using the method of characteristics. We describe this
method in the following section.

3.2.3. A numerical method for the solution of (45). The usual approach to the numerical
solution of the discrete coagulation–fragmentation equations for various choices of Kk,j and
Fk,j has been to solve the system (1) approximately by replacing the upper limit ∞ on the
second and fourth sums with some large but finite value [5, 6, 10]. The large nonlinear coupled
system may then be integrated numerically using Euler’s method [6] or a Runge–Kutta method
[10], for example. In the present paper, we propose a numerical method for the solution of the
partial differential equation (45), satisfied by the moment generating function. For simplicity,
we consider the case of monodisperse initial conditions but nothing would prevent us from
performing calculations with more general initial data.

When α = 0, with monodisperse initial conditions and assuming mass conservation,
Charpit’s equations (16)–(20) may be written in non-dimensional form

dx

dt
= (ε + 2)x − 2x2p, x(0) = ξ, (53)

dz

dt
= −x2p2 + ε

(
x + 1

x − 1

)
z − 2εxM0

(x − 1)
, z(0) = ξ, (54)

dp

dt
= 2p(xp − 1) + 2ε

(
p

(x − 1)
− (z − M0)

(x − 1)2

)
, p(0) = 1. (55)

We could, of course, have written the system as a coupled set of four equations (for x, z, p

and q), but since we have equation (45), relating ∂ϕ/∂t to ϕ, ∂ϕ/∂x and M0, this is not
necessary.

The numerical method proposed in this paper assumes mass conservation (M1 a constant)
and therefore the exact expression for M0 from (43). This means, in particular, that the
numerical solutions obtained will only be valid up to the gelation time. However, since the
purpose of our numerical algorithm is to determine the gelation time as a function of ε, this is
not a handicap. The initial mesh spacing is chosen as �x := 1/N for some N ∈ Z

+, and at
t = 0 the mesh points are x1, . . . , xN−1 with xi = i�x. A time step �t is set and the numerical
solutions to equations (53)–(55) advanced in time using a second-order Runge–Kutta method.
The number of time steps (m, say) for which this is done is limited by the constraint that the
characteristic whose foot is at xN−1 must not cross x = 1. If taking one more time step of
size �t would result in committing such a transgression, the time marching is halted and the
solution ϕ known at all points X(xi,m�t) (i = 1, . . . , N − 1) is interpolated back onto a
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Figure 1. Diagrammatic representation of the proposed method of characteristics for (45).

uniform grid, identical to that at t = 0. M1 may be calculated using a simple backward finite
difference, based on the values of ϕ at x = 1 (which is just M0 and known from (43)) and at
X(xN−1,m�t). The process is now repeated. Figure 1 illustrates the method.

3.2.4. Numerical results. By differentiating ϕ k times with respect to x and setting x = 0 we
see that we may express the number density of k-mers in the form

Nk = 1

k!

∂kϕ

∂xk

∣∣∣∣
x=0

. (56)

The first test of our numerical method, then, will be to compare the result of computing Nk

from (1) with that coming from the evaluation of the right-hand side of (56). When k = 1 and
α = 0, for example, the solution to the non-dimensionalized form of (1) up to the gelation
time is

N1(ε, t) = exp(−2(1 + ε)t) −
(

1 − ε

1 + ε

)
(1 − exp(−2(1 + ε)t))

+
2

(2 + ε)
(exp(−εt) − exp(−2(1 + ε)t)). (57)

In figure 2, we show that for ε = 2.5 and 5, for example, agreement between ∂ϕ/∂x

at x = 0 and the exact solution (57) is such that the curves for the solutions in each case
overlap. ∂ϕ/∂x was evaluated using a simple forward difference, based on the nodal values of
ϕ(0) = 0 and the interpolated value ϕ(x1), but could, of course, have been computed directly
from using the Runge–Kutta method on (55) at x = 0. In order to assess the values of ε for
which the solution to (53)–(55) is likely to be mass conserving, M1 (= ∂ϕ/∂x at x = 1) was
computed over some non-dimensional time interval [0, T ] using a simple backward difference
formula, as explained above. For the results presented in figure 3, T was chosen equal to
10. This value was chosen because it was found that the computed M1(t) reached steady
state at some t < T , at least for the values of �x and ε considered here. Computations
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Figure 2. Comparison, for ε = 2.5 and 5, between ∂ϕ/∂x at x = 0 and the exact solution (57);
�x = 0.0025,�t = 0.00025.
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Figure 3. Extrapolated value of M1(T ) against ε, �t = 0.0001.

of M1 for all the results that follow were performed with a dimensionless time step
�t = 1×10−4. Yet smaller values of �t did not lead to any noticeable changes in the computed
results.

In figure 3, we plot the values of M1(T ) obtained by extrapolating to zero mesh
size the linear least-squares polynomial based on computations of M1(T ) with �x =
1 × 10−3, 2.5 × 10−3, 5 × 10−3 and 1 × 10−2. That M1(T ) is visibly below 1 when ε � 1.43
would appear to indicate that loss of mass conservation occurs before T over this range of ε.
In figure 4, we show the approximate gel times tgel as functions of ε and computed to be the
smallest value of t � T at which the extrapolated M1(t) dropped below 0.99 and 0.995. From
the dimensionless form of (33) we know that when ε = 0, tgel = 0.5, and this is borne out
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Figure 4. Approximate gel times tgel against ε computed from the extrapolated value of M1.
�t = 0.0001.

by the results shown in figure 4. Our experimental observations at higher values of ε await,
however, confirmation from a rigorous mathematical analysis.
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